Question Id: PH0000012
Question: Find the
(a) maximum frequency
(b) minimum wavelength of X-rays produced by 30 kV electrons.
Answer:
(a) Maximum frequency of the X-ray produced by 30kV electron is \ 7.253 \times 10^{18}Hz .
(b) Minumum wavelength ( \lambda ) is 0.41 angstroms.
Explanation:
Given, potential V=30kV
\Rightarrow V=30 \times 10^3V
\Rightarrow V=3 \times 10^4V
So, energy of the X-ray is E=3 \times 10^4eV
[ 1eV=1.602\times 10^{-19}J ]
We know a particle having frequency ( \nu ) contain energy E=h\nu ; where h is Planck's constant h=6.626\times 10^{-34}Js
\Rightarrow \nu =\frac{E}{h}
\Rightarrow \nu =\frac{1.602\times 10^{-19} \times 3 \times 10^{4}}{6.626\times 10^{-34}}
\Rightarrow \nu =\frac{1.602 \times 3\times 10^{19} }{6.626}
\Rightarrow \nu =0.7253 \times 10^{19}
\Rightarrow \nu =7.253 \times 10^{18}
Hence, maximum frequency of the X-ray produced by 30kV electron is \ 7.253 \times 10^{18}Hz .
(b) We know the relationship between wavelength ( \lambda ) and frequency ( \nu ) is c=\nu \lambda ; where c is velocity of light.
\Rightarrow \lambda =\frac{c}{\nu }
When frequency ( \nu )is maximum then wavelength ( \lambda ) is minimum
\Rightarrow \lambda_{min} =\frac{c}{\nu_{max} }
\Rightarrow \lambda_{min} =\frac{3\times 10^8}{7.253\times 10^{18} }
\Rightarrow \lambda_{min} =0.41\times 10^{-10}
\Rightarrow \lambda_{min} =0.41 angstroms
So, minumum wavelength ( \lambda ) is 0.41 angstroms.
0 Comments