Question Id: MA0000001
Question: Find the roots of the equation \(4-11x=3^{2}\)
To find: roots of the equation \(4-11x=3x^{2}\)
Solution:
Given a quadratic equation , so it must have two roots
\[4-11x=3x^{2}\]
\[\Rightarrow 3x^{2}+11x-4=0\]
\[\Rightarrow 3x^{2}+12x-x-4=0\]
\[\Rightarrow 3x(x+4)-1(x+4)=0\]
\[\Rightarrow (3x-1)(x+4)=0\]
So, either \(\Rightarrow 3x-1=0\) or \(x+4=0\)
If \(\Rightarrow 3x-1=0\) then \(x=\frac{1}{3}\)
If \(\Rightarrow x+4=0\) then \(x=-4\)
Hence, roots of the equation are \(-4\) and \(-\frac{1}{3}\) . (Answer)
If you have any problem regarding this please leave a comment 💬 below
0 Comments